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Motivation

Motivation

Evolution of masive stars

@ Massive stars (M > 8 M,) serve as cosmic engines
@ Nuclear fusion of elements up to Fe

o Mixing of chemically processed elements to surface
o Release into the local ISM via strong stellar winds

— deposit large amounts of momentum and energy into their
surroundings and trigger galactic evolution
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Motivation

Motivation

@ Short-lived evolutionary phases with enhanced mass-loss and eruptions

@ Stars in such phases are luminous blue variables (LBVs), B[e]
supergiants, and yellow hypergiants (YHGs)

Fried Egg Nebula (YHG,

n Car (LB, HST) MWC 137 (Ble] supergiant, ESO: E. Lagadec)

Marston & McCollum 2008)
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Motivation

Motivation

Open questions
@ When during the
evolution of massive

stars happen these
phases?
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@ How much mass ist lost
in these phases?

@ What mechanism(s) R
trigger the eruptions?
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Motivation

Motivation

The B[e] supergiants

@ B-type supergiants (T, = 10000 — 25000K; log L/L, > 10%)

@ Equatorially outflowing disks composed of gas and dust (infrared excess)
@ Fast and dense polar winds

@ Many forbidden emission lines ([Ol], [Call], [NII], [Fell], [SII], etc)
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“fast
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polar wind

(broad UV lines)

HI ™ outflowing
Gt on ] disk
Artist's we(l\:’eo(];r[a E[gg)?uperglant TIK] <1500 _35[(’)‘(’)‘:) ~ 7000 (Kraus et al. 2007; 2010)
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Motivation

Motivation

Strategy for our investigations
@ Reveal structure and kinematics of their circumstellar material (CSM)
based on combined optical and near-infrared spectroscopic data
@ Study mass-loss history and triggering mechanisms for phases of
enhanced or eruptive mass loss

@ Investigate evolutionary phase based on chemical and abundance
analysis of the CSM

@ Resolve populations of B[e] supergiants, LBVs, and YHGs in the Local

Group Galaxies to study the evolution of massive stars at different
metallicities.
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Structure and Kinematics of the Circumstellar Material

Structure and Kinematics of the Circumstellar Material

Tracers for ionized and neutral atomic gas regions

@ High-resolution (R ~ 45000) optical spectroscopy obtained with FEROS

@ Excellent tracers for kinematics are typically forbidden emission lines:
o Line profiles display full kinematic information of their formation region.
temperature and density regions.

et al. 2007, 2010; Aret et al. 2012).

o Forbidden lines from different elements and ionization stages trace different
@ [Ol] and [Call] lines mirror high-density regions with Nicarj > Njoy (Kraus
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@ Call IR triplet lines are composite: contributions from disk + wind.
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Structure and Kinematics of the Circumstellar Material

pole—on edge—on intermediate spiral arm
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Disk tracers in FEROS spectra of Magellanic Cloud BJ[e] supergiants
from Aret et al. 2012 Qa0
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ture and Kinematics of the Circumstellar Material
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Circumstellar envi




Structure and Kinematics of the Circumstellar Material

Structure and Kinematics of the Circumstellar Material
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Tracers for the molecular regions
@ We use medium-resolution
(R ~ 4500) and high-resolution ®) K_J
(R ~ 50000) near-infrared

spectra obtained with SINFONI
and CRIRES

@ High-resolution spectra of the o
first CO band head displays

kinematical (e.g. rotational)
broadening (Kraus et al. 2000, m\

[

2013; Cidale et al. 2012)
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Structure and Kinematics of the Circumstellar Material

Kinematically resolved first CO bandheads of Galactic B[e] supergiants
CRIRES spectra (Muratore et al. 2012)
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Structure and Kinematics of the Circumstellar Material

CRIRES spectra for HD 327083 (Andruchow et al. in preparation) )
T CRIRES spectra ]

§

Model :

2= 46°
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Structure and Kinematics of the Circumstellar Material

CRIRES plus PHOENIX spectra for CPD-52 9243 (Cidale et al. 2012) )

CRIRES PHOENIX
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Structure and Kinematics of the Circumstellar Material

Structure and Kinematics of the Circumstellar Material

@ Combined kinematics obtained from the three tracers [Call], [Ol], and
CO (from inside out) indicate (quasi-)Keplerian rotation of the gas.
@ CO band emission marks the inner edge of the molecular disk region.

@ In all objects, temperatures are low (Tco < 3000 K) compared to the CO
dissociation temperature (Tcoqiss = 5000 K)

U
Ble] supergiants are surrounded by
detached, often multiple rings of gas and dust.

@ The existence of gaps in the disks is also confirmed by interferometry
(Wheelwright et al. 2012, 2013; Cidale et al. 2012).

U

Contrary to former suggestions, the disks of B[e] supergiants are not formed
and continuously supplied by an equatorially outflowing wind.

v
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Evolutionary phase

Evolutionary phase

SINFONI K-band survey

@ Ble] supergiants and YHGs
display strong CO band
emission; no CO in LBVs

@ Fits to CO band and Hydrogen
Pfund series emission from
Ble] supergiants (Oksala et al.
2013).

@ Discovery of *CO band
emission in B[e] supergiants
and YHGs

@ Enrichment of CSM with 3C
during stellar evolution

U

The amount of *CO reveals the
stars’ age (evolutionary phase)

P 110" arg/a/em/A]
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Evolutionary phase

Evolutionary phase

12C0O/3CO = 10 — 20 for the B[e] supergiants. This phase happens just
beyond the main-sequence. YHGs are post-RSGs with >CO/'3CO = 5 — 10.
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Resolving massive star populations

Resolving massive star populations

Why is it imporiant to resolve massive star populations

@ to increase samples of these rare objects, which is vital to improve our
understanding of stellar evolution of massive stars and to study
evolutionary connections

@ to study the occurrence of these particular evolutionary phases as a
function of metallicity

v

Why is it difficult to resolve massive star populations

@ Typically, classification is based on optical spectra
However:
o Difficult to ascertain in highly reddened regions (e.g., towards the center
of the Galaxy)
@ Optical spectra of LBVs in their hot (quiescent) phase are
indistinguishable from those of B[e] supergiants

@ Optical spectra of LBVs in their cool (eruptive) phase are
indistinguishable from those of YHGs
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Resolving massive star populations

Resolving massive star populations

characteristics in the near-infrared ! (Oksala et al. 2013)

B[e] supergiants, LBVs (hot and cool) and YHGs display clearly distinct J
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Resolving massive star populations

Summary and work in progress

@ Studying the structure and kinematics of the CSM of B[e] supergiants
revealed that they are surrounded by detached, multiple rings in
Keplerian rotation.

@ We discovered '*CO band emission, which allows us for the first time to
locate the Ble] supergiant phase in the evolution of massive stars

@ We discovered that K-band spectra of massive stars are excellent
indicators for their evolutionary stage

<

Current projects at ESO

@ Resolving the B[e] supergiant and LBV populations in M 33 using KMOS

@ Resolving the B[e] supergiant population in highly extincted regions and
studying their molecular (CO) disk regions using SINFONI

@ Searching for emission from other molecules such as SiO, water and OH

and resolving the kinematics in their line-forming disk/ring regions using
CRIRES
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