Binary Quasar Candidates: IFU Spectroscopy with VIMOS/VLT

Ivana Orlitová (Stoklasová)

Astronomical Institute, Academy of Sciences, Prague, Czech Republic

In collaboration with:

Bruno Jungwiert, Tereza Skalická, Miroslav Křížek, Lucie Jílková, Ivana Ebrová, Kateřina Bartošková, Michal Bílek, Lenka Janeková

(日) (日) (日) (日) (日) (日) (日)

Quasars (QSOs)

< ロ > < 同 > < 回 > < 回 >

ъ

- Active galactic nuclei (AGN)
- Accretion onto supermassive black hole

Quasars

- Active galactic nuclei (AGN)
- Accretion onto supermassive black hole

Binary quasars

Should be frequent, if:

- Galaxies evolve through mergers
- QSOs triggered by mergers
- \ldots Directly observed: ~ 5

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Galaxy pairs, Black-hole pairs

Different separations

HST/NASA/STScI/ESA

Spectroscopic Binary Quasar Candidates SDSS catalogue

Double-peaked [O III] lines in SDSS (Liu et al. 2010)

Double-peaked lines from binary quasars? Or outflows?

・ロト・西ト・ヨト・日・ うへぐ

Origin of emission lines

Narrow-Line Region (NLR)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

VIMOS/VLT spectroscopic follow-up

Stoklasová (Orlitová, PI), Jungwiert, Skalická, Bartošková, Ebrová, Jílková, Křížek

Targets:

- Selected 5 low-z SDSS targets from Liu et al. (2010)
- Selection by redshift (0.03 < z < 0.07), luminosity and RA

Goals:

- Observe selected candidates with VIMOS
- Derive spatial kinematics and [O III]/H β ratio
- Interpret
 - binary AGN?
 - rotation, outflow?
 - projection of two galaxies along LOS?

(日)

Integral-Field Spectroscopy (IFU)

1 spectrum is more than 1000 images. 1000 spectra is more than 1 spectrum...

- Spatially resolved spectroscopy
- Simultaneous acquisition of $10^2 10^4$ spectra
- Datacube $(x, y, \lambda) \rightarrow$ "3D" spectroscopy

Principles of different integral-field units (IFUs). Credit: University of Durham.

VIMOS/VLT observations

• Targets:

- SDSS J144804.17+182537.8 \rightarrow Q1418
- SDSS J151659.24+051751.5 \rightarrow Q1505
- SDSS J155619.29+094855.5 \rightarrow Q1509
- SDSS J163056.75+164957.1 \rightarrow Q1616
- SDSS J230442.82–093345.2 \rightarrow Q23–09
- High-resolution spatial sampling 0.33"/pixel
- Seeing 0.6" 0.8" (i. e. resolution \sim 0.5 1 kpc)
- FOV: 13" × 13"
- Spectral resolution (R = $2550 \rightarrow 120 \text{ km/s}$)
- Spectral range 4000 6000 Å \rightarrow [O III]4959,5007, H β em. lines

(日) (日) (日) (日) (日) (日) (日)

- Integration 8 \times 1000 s for each target
- We have approx. 300 resultant emission spectra per target

VIMOS – Stellar continuum

Central 2-3 kpc

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

VIMOS - [O III] Emission maps

Aligned with continuum, extent: \sim 1.5–3 kpc

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

VIMOS – [O III] spectra integrated over FOV

Diagnostics following Blecha et al. (2012) and Smith et al. (2011)

- Peak separation [km/s]: 270, 400, 400, 300
- Centroid offset from v_{sys} [km/s]: 8, 1, 18, 46 (\rightarrow no BH influence?)
- Ratios of peak fluxes: 0.7, 0.7, 0.7, 0.9 (\rightarrow no BH influence?)

VIMOS - [O III] spectra spatially resolved

Spectral line profiles: from simple narrow to complex

VIMOS – Q1505 J151659+051752, z = 0.0512, 1" = 3 pixels = 1 kpc

Theoretical I, v, σ maps

Code by Jugwiert et al. (2007)

 Velocity maxima off-axis: in elliptical rotation, or circular rotation + outflow

Elliptical rotation

Expanding disk

Outflow in a cone

・ロト・日本・日本・日本・日本・日本

VIMOS – Q1505

1D velocity profiles along "slits"

Radial profiles indicate rotation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

VIMOS - Q1505

Velocity channel maps for [O III] 5007

- Range: (-440,420) km/s
- 1 channel: 60 km/s

Theoretical velocity channel maps

Rotating disk – flat v_r

Outflow in a hollow cone

Theoretical velocity channel maps

Elliptical rotating disk

VIMOS - Q1505

Position-velocity diagrams

◆□▶◆□▶◆□▶◆□▶ □ つくで

Theoretical position-velocity diagrams

Rotating disk (flat v_r)

PA = 0, 30, 60, 90

Expanding disk

PA = 0, 30, 60, 90

Theoretical position-velocity diagrams

Elliptical disk

Outflow in a hollow cone

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

VIMOS – Q1505 [O ΙΙΙ]/Hβ

• [O III]/H β > 3, i. e. high excitation (AGN)

Q1505 – Interpretation

Elliptical ring (r = 2.5 kpc)?

- 2 emission-line regions (5 kpc sepation),
 off-centered, but aligned with continuum
- High excitation ([O III]/Hβ)
- Simple narrow lines (200 km/s)
- FOV spectrum double-peaked
- Velocity map: rotation (?), maxima off-axis
- 1D rotation curve at PA = -45 deg
- Velocity channel maps: do not have the "V-shapes" typical of rotation. Effect of resolution?
- P-V diagrams: rotation (?)
- FWHM different in the two parts of the ring

VIMOS – Other targets

Q1509

0.5

VIMOS – Other targets

Q1418

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

VIMOS – Other targets

Q1616

arcsec

▲□▶▲□▶▲□▶▲□▶ □ のQ@

VIMOS - Summary of results

- No obvious binary sources in continuum emission
 → study in more detail
- [O III] emission 2-3 kpc, mostly aligned with continuum

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

- 2 kinematic components overlap in space
- Double-peaked [O III] 5007, Hβ in spatially resolved spectra
- Signs of rotation (?)
- [O III] / Hb ratio generally high

Further exploration of VIMOS data

Explore the velocity space

- more kinematic models, more realistic
- include overlapping NLRs from 2 AGN
- use all the possible mappings (I, v, FWHM, channel maps, p-v diagrams) to determine best-fitting model
- Fourier decomposition (kinemetry, Krajnović et al. 2006)
- Combine gas emission data with stellar continuum
 - Look for disturbed morphologies indicating mergers
 - Absorption lines (e.g. Mg 5170) and the 4000 Å jump \rightarrow derive stellar kinematics, population ages
- Search for other emission lines
 - $\bullet\,$ e. g. [O III] 4363 Å \rightarrow derive temperature

$[O III]/H\beta$ ratios

・ロン ・四 と ・ ヨ と ・ ヨ と æ