Detailed physical modeling of Be star β CMi

Robert Klement

Faculty of Mathematics and Physics, Charles University in Prague

April 15, 2014

• Rapidly rotating main sequence B stars forming an outwardly diffusing gaseous, dust-free Keplerian disk

- Rapidly rotating main sequence B stars forming an outwardly diffusing gaseous, dust-free Keplerian disk
 - Infrared excess indicates the presence of circumstellar material

Carciofi et al. 2009, A&A 504, 915

- Rapidly rotating main sequence B stars forming an outwardly diffusing gaseous, dust-free Keplerian disk
 - Infrared excess indicates the presence of circumstellar material
 - Intrinsic polarisation implies that the material is aspherical

Rivinius et al. 2013, A&ARv 21, 69

- Rapidly rotating main sequence B stars forming an outwardly diffusing gaseous, dust-free Keplerian disk
 - Infrared excess indicates the presence of circumstellar material
 - Intrinsic polarisation implies that the material is aspherical
 - Double peaked emission lines indicate rotating material

Rivinius et al. 2013, A&ARv 21, 69

- Rapidly rotating main sequence B stars forming an outwardly diffusing gaseous, dust-free Keplerian disk
 - Infrared excess indicates the presence of circumstellar material
 - Intrinsic polarisation implies that the material is aspherical
 - Double peaked emission lines indicate rotating material
 - Interferometry consistent with a thin disk rotating in a Keplerian way

Rivinius et al. 2013, A&ARv 21, 69

Be phenomenon and viscous decretion

- Be phenomenon (mass ejection process) acting on top of a rotation rate of $\sim 75\%$ of critical or above
 - non-radial pulsations
 - small scale magnetic fields

Be phenomenon and viscous decretion

- Be phenomenon (mass ejection process) acting on top of a rotation rate of $\sim75\%$ of critical or above
 - non-radial pulsations
 - small scale magnetic fields
- after ejection into Keplerian orbit material is governed by viscosity -The viscous decretion disk (VDD) model (Lee et al. 1991, MNRAS 250, 432)

Succesful applications of the VDD model to individual targets

- χ Oph, κ Dra, β Psc and ν Cyg fit of interferometry and line profiles using a time-independent parametric model (BEDISK)
- ζ Tau and δ Sco fit of interferometry, polarimetry, spectroscopy and photometry using time-independent self-consistent model (HDUST)
- temporal variability of ω CMa fit of visual photometry during disk dissipation first determination of viscosity parameter $\alpha \sim 1$ (HDUST)

Faculty of Mathematics and Physics, Charles University in Prague

HDUST (Carciofi & Bjorkman 2006, ApJ 639, 1081)

• 3D NLTE Radiative transfer Monte Carlo code

- Samples photon absorption rates to solve the statistical equilibrium equations \rightarrow level populations, degree of ionisation, radiative equilibrium temperature
- Computes model observables:
 - SED in the chosen wavelength ranges
 - Line profiles
 - Intrinsic polarisation
 - Synthetic images allow to compute interferometric observables for a given baseline

Model description

- Hybrid model
 - isothermal density structure $\rho(r, z) = \frac{\Sigma_0}{\sqrt{2\pi}H_0} \left(\frac{r}{R_e}\right)^{-n} \exp\left(-\frac{z^2}{2H^2}\right);$
 - $H(r) = (c_s/v_{\Phi})r$ but non-isothermal temperature structure!
 - input parameters: M_{star} , R_{pole} , $W = \frac{v_{rot}}{v_{orb}}$, $GD_{exponent} = 0.25$ (von Zeipel), Σ_0 , n (n = 2.0 for isothermal disk), *i*, R_{disk} , v_{turb}

Jones et al. 2008, ApJ 687, 598

Model description

- Hybrid model
- Combined hybrid model vertical HEQ structure consistent with temperature solution

Carciofi & Bjorkman 2008, ApJ 684, 1374

Model description

- Hybrid model
- Combined hybrid model
- Steady-state VDD model density & velocity field consistent with temperature solution
 - radial temperature gradient negative \rightarrow *n* < 2.0; positive \rightarrow *n* > 2.0
 - input parameters: Σ_0 , $n \to \dot{M}$, $\alpha (= 0.1)$; $R_0 (= R_{disk}$ but it should be $R_{disk} \neq R_0$)

Carciofi & Bjorkman 2008, ApJ 684, 1374

Observations used

- Photometry and radio fluxes up to cm wavelengths APEX, CARMA
- Spectroscopy IUE, Ondřejov, UVES, FEROS + additional amateur spectra from the BeSS database
- Polarimetry HPOL, Pico dos Dias Observatory
- Near-Infrared Spectro-interferometry VLTI/AMBER, (VLTI/MIDI, VLTI/PIONIER) CHARA/MIRC, (CHARA/CLIMB)

HR AMBER spectro-interferometry in Br γ

Robert Klement

Faculty of Mathematics and Physics, Charles University in Prague

Synthetic image in Br γ produced by HDUST)

Fitting spectro-interferometry

4 free parameters - distance, i, PA, $\Delta\lambda$

Fitting spectro-interferometry

Center for High Angular Resolution Astronomy

Center for High Angular Resolution Astronomy

Mode	Telescopes	Band	Typical limit Mag=	Best performance Mag=	At Spectral Resolution R=
Acquisition	2	V-R	10.0	12.0	Broad band
Tilt tracking	2	V-R	10.0	12.0	Broad band
CLASSIC	2	H or K band	7.0	8.5	Broad band
CLIMB	3	H or K band	6.0	7.0	Broad band
VEGA (hi-res)	2 or 3	2 bands of 7nm (separation 30nm) in 480-850nm	4.0	5.0	30000
VEGA (med-res)	2 or 3	2 bands of 35nm (separation 160nm) in 480-850nm	6.5	7.5	6000
MIRC	6	H (K)	4.5 (3.0)	5.5 (4.0)	40
PAVO	2	630-900 nm	7.0	8.0	30

uv coverage of AMBER, MIRC and CLIMB observations

LR CHARA/MIRC spectro-interferometry in H-band

Faculty of Mathematics and Physics, Charles University in Prague

Things to do...

- Include all data APEX, CARMA, VLTI/PIONIER, VLTI/MIDI,...
- Obtain a perfect self-consistent model matching all the observations
- Use far-IR and radio fluxes to obtain the physical size of the disk

Thank you for your attention!