
Molecular fragments in the Carina Flare supershell

R. Wünsch J. Palouš J. E. Dale A. P. Whitworth
S. Ehlerová P. Jáchym V. Sidorin F. Dinnbier

R. Smith J. Dawson Y. Fukui

15th April 2014 / 7 years in Chile workshop

R. Wünsch (Astronomical Institute ASCR) Fragmenting supershell 1 / 15



Introduction

Subject of this work: secondary star formation triggered by
expanding shells (collect and collapse model)
Aim: compare theoretical models of fragmentation of the
self-gravitating shell with observations of fragmenting
(super-)shells

Outline:
1 Hydrodynamic simulations (AMR and SPH) of gravitationally

unstable shell and their comparison with each other and with
theoretical models.

2 APEX 13CO observations of a part of the Carina Flare supershell
(GSH287+04-17) and analysis of fragment properties
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Simulation setup

extremely simplified model to avoid instabilities other than the
gravitational one (RT, Vishniac)
ballistic shell in a rarefied medium with non-zero pressure

Mshell = 2 × 104 M�
Tshell = 10 K
Rshell,0 = 10 pc
Vshell,0 = 2.2 km s−1

Rshell,max = 23 pc
Pext = 10−17, 10−13

or 5 × 10−13 dyne cm−2
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Codes & initial conditions

AMR: Flash 2.5 (Fryxell et al., 2000), resolution: 6403

SPH: SPHNG (Bate, Bonnell & Price, 1995), res.: 1.2 × 106 ptcls
remapping: noise due to SPH particles remapped on the grid
random velocities: Gaussian with σ = cs
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AMR vs. SPH
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AMR vs. SPH
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Perturbation growth rate
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Perturbation growth rate
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PEXT determines gravitational instability wavelength

Pext = 10−17 Pext = 10−13 Pext = 5 × 10−13dyne cm−2
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further improved by Kim et al. (2012) (for high Pext)
high accuracy numerical tests by F. Dinnbier
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Carina Flare supershell (discovered by Fukui, 1999)

we observe a part of the Carina Flare supershell (GS287+4-17)
with APEX/SHFI
CF extends ∼ 450 pc above the gal. pl. - different PEXT expected
two clouds (16 and 74) selected (based on NANTEN obs.)
Cloud 16: 22 hours (86A), dv = 0.6 km/s
Cloud 74: 36 hours (89A), dv = 0.1 km/s

16

74
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APEX vs. NANTEN
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Identification of clumps: cloud 16

clump-finding code DENDROFIND
(http://galaxy.asu.cas.cz/∼richard/dendrofind/)
(Wünsch et al., 2012, A&A, 539, 116)
two essential parameters: Tcutoff, dTleaf
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Identification of clumps: cloud 74
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Clump mass spectrum & clump distances

cloud 16:
dv = 0.6 km/s, 44 clumps, CMF peak: ∼ 10 M�
separation of clumps: minimum spanning tree, dav ∼ 1.7 pc
cloud 74:
dv = 0.1 km/s, 235 clumps, CMF break: ∼ 10 M�
separation of clumps: minimum spanning tree, dav ∼ 3.5 pc
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Cumulative CMF
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Comparison to PAGI

contours of constant peak mass of CMF
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Comparison to PAGI

contours of constant distance among clumps
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Comparison to PAGI

average surface density of the Carina Flare supreshell (ΣCarinaFlare)
and typical pressure in the ISM (PISM )
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Conclusions

excellent agreement between AMR and SPH simulations
results well described by the theory of the thick shell gravitational
instability
cloud 16: CMF and typical distances among clumps consistent
with the gravitational instability origin
cloud 16: the surface density and the external pressure derived
from clump properties in agreement with global properties of the
CF supershell
cloud 74: more complex; if clumps formed by gravity, it would
suggest lower shell surface density and lower PEXT; however,
population of low mass clumps indicates other mechanism must
be also involved
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